Libellé du cours : | Energy for the Internet-Of-Things |
---|---|
Département d'enseignement : | EEA / Electronique Electrotechnique Automatique |
Responsable d'enseignement : | Monsieur PHILIPPE PERNOD |
Langue d'enseignement : | |
Ects potentiels : | 0 |
Grille des résultats : | |
Code et libellé (hp) : | MR_ETECH_S3_EIO - Energy for the Internet-Of-Thi |
Equipe pédagogique
Enseignants : Monsieur PHILIPPE PERNOD
Intervenants extérieurs (entreprise, recherche, enseignement secondaire) : divers enseignants vacataires
Résumé
The objective of this teaching module is to appropriate new and innovative technologies for powering Connected Objects. Brief program: 1. Physics of energy conversion: - Thermodynamics: notion of thermal machine, efficiency, Carnot efficiency, first and second principles, heat transfers (conductive, conducto-convective, radiative), Fourier's law, analogy between thermal and electricity, notion of coupled dissipative transfers (Onsager relations) - Mechanics: notions of elasticity, displacement, deformation, Hooke's law (useful for the Piezo) 2. Issues and applications: Photovoltaic energy, vibrational and piezoelectric energy, thermoelectricity, rectification and energy storage 3. Practical aspects: The proposed development kit uses different energy recovery modalities (mechanical, push button), solar (photovoltaic). Radio transmission modules and a programming interface are also available. The student will have to realize a chain of recovery, sensor/measurement, transmission.
Objectifs pédagogiques
Objectives (in terms of know-how): - To know the concepts of thermodynamics, semiconductor physics, and mechanics useful for the study of energy conversion systems. - To know the typical orders of magnitude of the recoverable powers (and densities) for various energy sources. (Photovoltaic, Thermoelectric, Piezoelectric in particular). - To know for these different sources what are the materials, technologies and constraints in terms of size, efficiency and availability - Take in hand a development kit for connected objects, use the various energy sources, report on experimental work Acquired skills (direct/indirect): - Use the concepts of efficiency and coupled transports to describe different energy conversion mechanisms within the same theoretical framework. - To be able to compare the efficiency and the functioning of these mechanisms. - To be able to compare, with respect to a given use case, the potential of different energy sources. - To be able to understand the state of the art research of micro sources of energy recovery - Implement existing components to create an energy autonomous object.
Objectifs de développement durable
Modalités de contrôle de connaissance
Contrôle Continu
Commentaires: -
Ressources en ligne
For practical works, a development kit using different energy recovery modalities (mechanical, push button), solar (photovoltaic), radio transmission modules and a programming interface will be used.
Pédagogie
Lectures & Tutorials : 18 Practical work: 10 A development kit using different energy recovery modalities (mechanical, push button), solar (photovoltaic), radio transmission modules and a programming interface will be used.
Séquencement / modalités d'apprentissage
Nombre d'heures en CM (Cours Magistraux) : | 18 |
---|---|
Nombre d'heures en TD (Travaux Dirigés) : | 0 |
Nombre d'heures en TP (Travaux Pratiques) : | 10 |
Nombre d'heures en Séminaire : | 0 |
Nombre d'heures en Demi-séminaire : | 0 |
Nombre d'heures élèves en TEA (Travail En Autonomie) : | 0 |
Nombre d'heures élèves en TNE (Travail Non Encadré) : | 0 |
Nombre d'heures en CB (Contrôle Bloqué) : | 0 |
Nombre d'heures élèves en PER (Travail PERsonnel) : | 0 |
Nombre d'heures en Heures Projets : | 0 |
Pré-requis
Semiconductor physics
Nombre maximum d'inscrits
Remarques
This specific teaching is operated by University of Lille within the framework of the co-accreditation of the master between Centrale Lille and University of Lille.