Libellé du cours : | Advanced Wireless and Wired Technologies fos UHD Communications |
---|---|
Département d'enseignement : | EEA / Electronique Electrotechnique Automatique |
Responsable d'enseignement : | Monsieur PHILIPPE PERNOD |
Langue d'enseignement : | |
Ects potentiels : | 0 |
Grille des résultats : | |
Code et libellé (hp) : | MR_ETECH_S3_AWW - Advanced Wireless & Wired Tech |
Equipe pédagogique
Enseignants : Monsieur PHILIPPE PERNOD
Intervenants extérieurs (entreprise, recherche, enseignement secondaire) : divers enseignants vacataires
Résumé
Part I - Digital Communications Today's technological advancements mean that the amount of information has never been greater than it is today. It is growing at breakneck speed and comes in the form of images (still or moving), sound or digital data. On the other hand, there is a convergence between telecommunications networks and computer networks. Although these networks carry the same type of data stream (digital data, voice, video...) and are based on the same model (the OSI model), their requirements in terms of quality of service different. In this module, we will be interested only in the lower layers of the OSI model (Physical layer and principles of modulations), and more particularly in the physics of Radio Frequencies (in the terrestrial environment and guided) and in the principles of modulation / demodulation ( analog and digital). Course Map : - Chapter 1: Introduction to data transmission systems. - Chapter 2: Propagation of RF waves - RF link assessments. - Chapter 3: Analog modulations. - Chapter 4: Digitization of analog signals. - Chapter 5: Digital baseband transmissions. - Chapter 6: Digital modulations on carrier frequency. - Chapter 7: Noise in digital modulations. - Chapter 8: Synchronization, equalization and regeneration. Part II - Mobile Networks, IoT, UHS The lessons of "Advanced Communication Networks" cover three main points which are: 1) Cellular networks. 2) LPWAN (Low Power Wide Area Network) for IoT networks. 3) UHS (Ultra High Speed) communications. In the first part, the four generations (1G to 4G) of cellular networks are presented focusing on the aspect of the physical layer and an introduction to 5G technology is given. The second part mainly describes what LPWAN networks are and focuses on two French and well-known protocols, LoRa ™ and Sigfox ™. Finally, the last part concerns UHS communications including fiber and THz communications. Course Map : - Chapter 1: Telecommunications networks. - Chapter 2: Mobile telephone networks. - Chapter 3: IoT networks. - Chapter 4: UHS (Ultra High Speed) communications.
Objectifs pédagogiques
For Part I : At the end of the course, the student will be able to: - Sizing a transmission system based on specifications. - Build a radio frequency transmission system using Radio Software modules. - Know how to use the theoretical bases of digital transmission allowing a digital information source to be conveyed through an analog physical medium. For Part II : By the end of the module, students should have acquired the following skills: - Understand the differences between families of wireless technologies. - Assimilate basic knowledge on current and future cellular networks as well as new LPWAN technologies for IoT. - To be able to identify a wireless technology adapted to a specific use case. - Be able to set up a simple but complete IoT application.
Objectifs de développement durable
Modalités de contrôle de connaissance
Contrôle Continu
Commentaires: For Part I :
Continuous monitoring
- Homework on the sizing of digital telecommunications systems (33%).
- LabView laboratories on the fundamentals of radio communications (33%).
- Mini project on the implementation of a radio transmission on carrier frequency (33%).
For Part II :
- Practical work on setting up a LoRa network (50%).
- Presentation on one of the technologies for IoT (50%).
Ressources en ligne
For Part I : - Handout and course videos. - Course transparencies. - 4 TD statements. - Self-correction training exercises. - Tutorials and online documentation of the Communications system design suite toolkit from LabView. For Part II : - Handout and course videos. - Course transparencies.
Pédagogie
For Part I : The teaching will be based on LabView's Communications system design suite toolkit. This working environment will allow the direct practice of the concepts studied in the framework of the module during practical seminars. The deepening and integration of these concepts will be achieved through a mini project. For Part II : Theoretical lessons (22h of lessons) are complemented by laboratory work (8h) which focuses on the LoRa protocol (WAN), where students analyze the LoRa protocol and create their first and complete IoT application, from data transmission to their viewing using popular applications / software (SDR Console, Arduino, Cayenne myDevices, etc.).
Séquencement / modalités d'apprentissage
Nombre d'heures en CM (Cours Magistraux) : | 30 |
---|---|
Nombre d'heures en TD (Travaux Dirigés) : | 0 |
Nombre d'heures en TP (Travaux Pratiques) : | 0 |
Nombre d'heures en Séminaire : | 38 |
Nombre d'heures en Demi-séminaire : | 0 |
Nombre d'heures élèves en TEA (Travail En Autonomie) : | 0 |
Nombre d'heures élèves en TNE (Travail Non Encadré) : | 0 |
Nombre d'heures en CB (Contrôle Bloqué) : | 0 |
Nombre d'heures élèves en PER (Travail PERsonnel) : | 0 |
Nombre d'heures en Heures Projets : | 0 |
Pré-requis
Basis of signal processing
Nombre maximum d'inscrits
Remarques
Mutual education with the Ecole Centrale de Lille Engineering G3-SIC course : - For Part I : Digital Communications - For Part II : Mobile networks, IoT and UHS Maximum 16 students for the ETECH master's degree students enrolled at Centrale Lille